PSEA Tutorials - CLI Edition (more to come)¶
Introduction¶
In this tutorial you’ll use QIIME 2 to perform an analysis of some data.
Typical Runtime: 1 Minunte 20 Seconds
Description¶
This guide is a preview of how you can use some of the q2-PSEA’s individual modules.
Automated PSEA Analysis with Visualizations¶
Here we will visualize the results of the PSEA operation by running the following command:
import qiime2.plugins.psea.actions as psea_actions
scatter_plot_viz, volcano_plot_viz = psea_actions.make_psea_table(
scores_file='source/data/psea-example-data/IM0031_PV2T_25nt_raw_2mm_i1mm_Z-HDI75.tsv',
pairs_file='source/data/psea-example-data/pairs.tsv',
peptide_sets_file='source/data/psea-example-data/input.gmt',
threshold=0.75,
species_taxa_file='source/data/psea-example-data/species_taxa.tsv',
min_size=3,
max_size=5000,
permutation_num=10000,
table_dir='psea-example-tables',
)
library(reticulate)
psea_actions <- import("qiime2.plugins.psea.actions")
action_results <- psea_actions$make_psea_table(
scores_file='source/data/psea-example-data/IM0031_PV2T_25nt_raw_2mm_i1mm_Z-HDI75.tsv',
pairs_file='source/data/psea-example-data/pairs.tsv',
peptide_sets_file='source/data/psea-example-data/input.gmt',
threshold=0.75,
species_taxa_file='source/data/psea-example-data/species_taxa.tsv',
min_size=3L,
max_size=5000L,
permutation_num=10000L,
table_dir='psea-example-tables',
)
scatter_plot_viz <- action_results$scatter_plot
volcano_plot_viz <- action_results$volcano_plot
qiime psea make-psea-table \
--p-scores-file source/data/psea-example-data/IM0031_PV2T_25nt_raw_2mm_i1mm_Z-HDI75.tsv \
--p-pairs-file source/data/psea-example-data/pairs.tsv \
--p-peptide-sets-file source/data/psea-example-data/input.gmt \
--p-threshold 0.75 \
--p-species-taxa-file source/data/psea-example-data/species_taxa.tsv \
--p-min-size 3 \
--p-max-size 5000 \
--p-permutation-num 10000 \
--p-table-dir psea-example-tables \
--o-scatter-plot scatter-plot.qzv \
--o-volcano-plot volcano-plot.qzv
scatter_plot, volcano_plot = use.action(
use.UsageAction(
plugin_id="psea",
action_id="make_psea_table"
),
use.UsageInputs(
scores_file="source/data/psea-example-data/IM0031_PV2T_25nt_raw_2mm_i1mm_Z-HDI75.tsv",
pairs_file="source/data/psea-example-data/pairs.tsv",
peptide_sets_file="source/data/psea-example-data/input.gmt",
threshold=0.750000,
species_taxa_file="source/data/psea-example-data/species_taxa.tsv",
min_size=3,
max_size=5000,
permutation_num=10000,
table_dir="psea-example-tables"
),
use.UsageOutputNames(
scatter_plot="scatter_plot",
volcano_plot="volcano_plot"
)
)
- Using the
qiime2 psea make-psea-table
tool: Set “scores_file” to
source/data/psea-example-data/IM0031_PV2T_25nt_raw_2mm_i1mm_Z-HDI75.tsv
Set “pairs_file” to
source/data/psea-example-data/pairs.tsv
Set “peptide_sets_file” to
source/data/psea-example-data/input.gmt
Set “threshold” to
0.75
Expand the
additional options
sectionSet “species_taxa_file” to
source/data/psea-example-data/species_taxa.tsv
Set “min_size” to
3
Set “max_size” to
5000
Leave “permutation_num” as its default value of
10000
Set “table_dir” to
psea-example-tables
Press the
Execute
button.
Using Different Methods To Fit A Spline¶
A number of different methods to fit a spline have also been provided to the user. These options include the following:
Smooth spline using R: “r-smooth”
Smooth spline using Python: “py-smooth”
Cubic spline using the “splines2” package for R: “cubic”
Here we will use the “cubic” option to fit a spline by running the following command:
scatter_plot_with_cubic_spline_viz, volcano_plot_with_cubic_spline_viz = psea_actions.make_psea_table(
scores_file='source/data/psea-example-data/IM0031_PV2T_25nt_raw_2mm_i1mm_Z-HDI75.tsv',
pairs_file='source/data/psea-example-data/pairs.tsv',
peptide_sets_file='source/data/psea-example-data/input.gmt',
threshold=0.75,
species_taxa_file='source/data/psea-example-data/species_taxa.tsv',
min_size=3,
max_size=5000,
permutation_num=10000,
spline_type='cubic',
table_dir='psea-cubic-spline-example-tables',
)
action_results <- psea_actions$make_psea_table(
scores_file='source/data/psea-example-data/IM0031_PV2T_25nt_raw_2mm_i1mm_Z-HDI75.tsv',
pairs_file='source/data/psea-example-data/pairs.tsv',
peptide_sets_file='source/data/psea-example-data/input.gmt',
threshold=0.75,
species_taxa_file='source/data/psea-example-data/species_taxa.tsv',
min_size=3L,
max_size=5000L,
permutation_num=10000L,
spline_type='cubic',
table_dir='psea-cubic-spline-example-tables',
)
scatter_plot_with_cubic_spline_viz <- action_results$scatter_plot
volcano_plot_with_cubic_spline_viz <- action_results$volcano_plot
qiime psea make-psea-table \
--p-scores-file source/data/psea-example-data/IM0031_PV2T_25nt_raw_2mm_i1mm_Z-HDI75.tsv \
--p-pairs-file source/data/psea-example-data/pairs.tsv \
--p-peptide-sets-file source/data/psea-example-data/input.gmt \
--p-threshold 0.75 \
--p-species-taxa-file source/data/psea-example-data/species_taxa.tsv \
--p-min-size 3 \
--p-max-size 5000 \
--p-permutation-num 10000 \
--p-spline-type cubic \
--p-table-dir psea-cubic-spline-example-tables \
--o-scatter-plot scatter-plot-with-cubic-spline.qzv \
--o-volcano-plot volcano-plot-with-cubic-spline.qzv
scatter_plot, volcano_plot = use.action(
use.UsageAction(
plugin_id="psea",
action_id="make_psea_table"
),
use.UsageInputs(
scores_file="source/data/psea-example-data/IM0031_PV2T_25nt_raw_2mm_i1mm_Z-HDI75.tsv",
pairs_file="source/data/psea-example-data/pairs.tsv",
peptide_sets_file="source/data/psea-example-data/input.gmt",
threshold=0.750000,
species_taxa_file="source/data/psea-example-data/species_taxa.tsv",
min_size=3,
max_size=5000,
permutation_num=10000,
spline_type="cubic",
table_dir="psea-cubic-spline-example-tables"
),
use.UsageOutputNames(
scatter_plot="scatter_plot_with_cubic_spline",
volcano_plot="volcano_plot_with_cubic_spline"
)
)
- Using the
qiime2 psea make-psea-table
tool: Set “scores_file” to
source/data/psea-example-data/IM0031_PV2T_25nt_raw_2mm_i1mm_Z-HDI75.tsv
Set “pairs_file” to
source/data/psea-example-data/pairs.tsv
Set “peptide_sets_file” to
source/data/psea-example-data/input.gmt
Set “threshold” to
0.75
Expand the
additional options
sectionSet “species_taxa_file” to
source/data/psea-example-data/species_taxa.tsv
Set “min_size” to
3
Set “max_size” to
5000
Leave “permutation_num” as its default value of
10000
Set “spline_type” to
cubic
Set “table_dir” to
psea-cubic-spline-example-tables
Press the
Execute
button.
- Once completed, for each new entry in your history, use the
Edit
button to set the name as follows: (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name
“Name” to set (be sure to press
Save
)#: qiime2 psea make-psea-table [...] : scatter_plot.qzv
scatter-plot-with-cubic-spline.qzv
#: qiime2 psea make-psea-table [...] : volcano_plot.qzv
volcano-plot-with-cubic-spline.qzv
Keep in mind, when using the “cubic” spline approach, you are also afforded some extra customization with the “degree” and “dof” (degree of freedom) options to get the best spline fit.